

	Tilden Park Software
 © Tilden Park Software, 2001
	2808 Adeline St. #1
Berkeley, CA 94703
510.843.0839 voice
510.843.0849 fax
www.tildenpark.com

Acme Inc.
Engineering Audit

January 1, 2002
Proprietary & Confidential,
Acme Inc.
Table of Contents

11.
Overview

11.1.
Purpose and Scope

11.2.
Summary Conclusions

12.
Current Architecture

12.1.
Component Map

12.2.
Components

22.2.1.
Component One

22.2.2.
Component Two

23.
Implementation

33.1.
Synchronization Issues

33.2.
Administration

33.2.1.
System Installation

33.2.2.
System Operational Issues

44.
Performance & Capacity

44.1.
Overall Performance Requirements

44.1.1.
Minimal User Requirements

44.1.2.
Minimal System Response Requirements

54.1.3.
Server loading characteristics

54.1.4.
System Storage Capacity

54.2.
System Hotspots (Critical Components)

55.
Security

55.1.
Security via Application

55.2.
Hacker Security

66.
Engineering Practices

66.1.
Specifications

66.2.
Engineering Changes

66.3.
Source Code line (Configuration Management)

66.3.1.
Code line directories

66.3.2.
Source Code Control System

66.4.
Coding Standards

66.5.
Testing

66.5.1.
Code build testing

76.5.2.
Testing Methodology

76.5.3.
Release Testing

76.5.4.
Feature Testing

76.5.5.
Load Testing

76.5.6.
Response Time Testing

76.5.7.
Testing correctness of retrieval

76.6.
Bugs & Support

76.6.1.
Reporting & Tracking

76.6.2.
Bug Fixing

76.7.
Release Process

86.8.
Engineering Practices Observations

<Company X> Engineering Audit

1. Overview

1.1. Purpose and Scope

This audit report is prepared on behalf of the Board of Directors of <Company X> as an overview of the current state of the engineering effort at <Company X>. It is based on interviews with the major players in the engineering department. The goal is to uncover potential holes in engineering’s plans for addressing performance issues, to assess future architectural direction, and to audit the current state of engineering practice at <Company X>.

Often, another use of the audit is to provide an engineering product roadmap. This is often of great interest and value to the company because it gets new hires going much faster. It is, of course, also useful in getting the existing engineering group in sync.

1.2. Summary Conclusions

This is the abstract that gives the overall conclusions. For example, things are pretty good except for certain items; things are bad news; etc. This section is the quickie view for board members, some of whom won’t read past the 1st page.

2. Current Architecture

High-level, 30,000 feet description of the product’s architecture. A few paragraphs should do it here. Go into more detail in the sub-sections that follow.
2.1. Component Map

This is a very high-level picture of the current architecture. A block diagram of the main components and their relationship is suitable. For example, for a web application show the browser, the web server, the application server, the main components of the application server, plus other main servers like databases, search engines, etc.

2.2. Components

The significant components/areas covered are:
(This is a one-paragraph description of the main components. Usually you just talk about the components that are critical or complicated or problematic or important but non-obvious.)
Component One — One sentence of what Component One does. Tell why it’s important.

Component Two — One sentence of what Component Two does. Tell why it’s important.

2.2.1. Component One

2.2.1.1. Description

A paragraph or two description of the component.

2.2.1.2. Design Goals

Describe the design goals of the component. For example, speed, modularity, etc.

2.2.1.3. Internal Description

This is typically the longest section for the component. Here you talk about how it actually does what it does.

2.2.1.4. Interface

Describe how it interfaces with the other parts of the product. For example, methods interface, rmi/http/soap/proprietary, etc.

2.2.1.5. Code Location

Where in the code line does this component’s code actually exist? (The board of directors doesn’t care but this is very useful for the engineering group and new hires.)

2.2.1.6. Observations

This is the key section in terms of the audit. Here you say what you really think about the component, good or bad. If bad, you talk about alternatives that are better.

2.2.2. Component Two

2.2.2.1. Description

2.2.2.2. Design Goals

2.2.2.3. Internal Description

2.2.2.4. Interface

2.2.2.5. Code Location

2.2.2.6. Observations

3. Implementation

Cover the implementation of the system, primarily by component. Also discuss administrative issues and synchronization, where applicable. The implementation section should discuss those parts of the product that make it hard and/or easy to get the thing running and keep it running.

3.1. Synchronization Issues

For multi-tier products and/or products that include multiple servers, how is the data synchronized among the components?

3.2. Administration

3.2.1. System Installation

What’s it take to get a customer up and running using the product?

3.2.2. System Operational Issues

3.2.2.1. Back-up

How are back ups handled? If there are multiple databases, how are they kept consistent?

3.2.2.2. Recovery

When the system crashes, what does it take to get things up and available again?

3.2.2.3. System Tuning

Is there regular system maintenance required? Or needed? For example, some databases need to have indexes or index statistics re-calculated periodically.

Is the tuning automatic or does it require manual intervention?

3.2.2.4. System Monitoring

How is the system monitored? If it crashes, how and when is that discovered? Are there checks on performance fluctuations? What about monitoring for potential space, e.g., disk, or capacity, e.g., memory or network, problems?

3.2.2.5. Web-Hosting

If applicable, discuss the web-hosting aspect of the product. If hosted at a third-party, what are the procedures used <company X> and the hosting service to ensure that the right stuff is running in the right way?

3.2.2.6. Complexity

Discuss the product in terms of complexity. For example, consider a system that involves a great number of processes with complex procedures for monitoring, backup and maintenance. A great deal of the ability of the company to scale will depend on the ability of operations to install new systems, maintain existing systems and provide the customers with extremely high availability. In general, practical delivery of reliable service is limited to systems with fewer “moving parts”. Simplifying the number of processes/machines involved in the system is a significant long-term design goal.

3.2.2.7. Fault Tolerance & Recoverability

What are the fault tolerant and recoverability aspects of the product?

4. Performance & Capacity

Excellent performance of a system is likely to always be an ever-receding goal. As this is probably the single easiest measure of the system and the most complex to fix, it is important that all parties understand what the real issues are, what are the common company priorities and agree on achievable goals before proceeding.

It important that the company quantify what the performance and capacity are. “As fast as possible with lots of data”, is not a sufficient requirement!

4.1. Overall Performance Requirements

What are the overall requirements? Specific situations need to be listed.

4.1.1. Minimal User Requirements

For example, in a web application you might have the following requirement:

The minimal line speed that has to be supported is 28.8KB IE 4.0 and above and Netscape 4.0 and above browsers must be supported. Netscape Navigator running on HP UNIX workstations does not need to be supported

4.1.2. Minimal System Response Requirements

There may be different requirements for the system. For example, a “cold-start” requirement may be less than a “warm system” one. For website applications pick specific examples and get the requirements for them. The following sub-sections are example items for a web-based application.

4.1.2.1. Serving Login Page & Home Page

What’s the requirement for first getting into the system.

4.1.2.2. Returning to Home Page

Once you’re on the system, how long should it take to return to the home page.

4.1.2.3. Maximum inter-site page navigation time

How first do you need to get to different pages in the application?

4.1.2.4. Serving a single known document via URL

For a particular URL for a particular document, it should take less than X seconds to serve up the document.

4.1.2.5. Running a single average query

How long should an “average” query take?

4.1.2.6. Administrative Functions

Administrative functions, if applicable, can usually take longer than the regular stuff. What’s the specific minimal requirement?

4.1.3. Server loading characteristics

What are the loading characteristics of the system?

4.1.3.1. Simultaneous Users

How many users does the system need to support?

4.1.3.2. Loading characteristics

What happens when more and more users log in? Does the system degrade gracefully or just lock-up?

4.1.4. System Storage Capacity

How big does the database need to be?

4.2. System Hotspots (Critical Components)

Identify and discuss the components that are critical in terms of performance and capacity.

5. Security

5.1. Security via Application

These are the normal, non-hacker, authentication and authorization characteristics of the system. For example, you need a good user name/password combination to get on the system and you only see the sections of the applications where you have permission.

5.2. Hacker Security

What is the protection of the system against hackers? For example:

Four levels of access protection are supplied: O/S, Database, firewall, and SSL. The Database and the O/S each are run as a different Unix user. Documents stored in each instance are stored in files owned by that user. Each apache server is run under the same user id as the owner of the documents. All inter-process communications are performed on ports numbers not passed by the firewall and cannot be accessed from “outside” the system. Line eavesdropping is prevented by the use of SSL.

6. Engineering Practices

These are the Mom and apple pie things about engineering. Many start-ups often neglect at least some of them.

6.1. Specifications

Are there up-to-date Marketing Requirements, Functional Specifications, and Implementation Specifications documents for the product?

6.2. Engineering Changes

Is there a process for adding, modifying or deleting features from the product?

6.3. Source Code line (Configuration Management)

How is the code line organized?

6.3.1. Code line directories

Show a picture of the main code line if feasible.

Are there single of multiple code lines for a particular release?

6.3.2. Source Code Control System

How is SCCS done?

How often is the development code line backed-up?

Are off-site copies kept?

6.4. Coding Standards

Are there coding standards for C++, Modperl, html, etc.?

6.5. Testing

How is testing done? Is the data that testing is done on representative of typical use of the product? For example, size of database and numbers of users.

6.5.1. Code build testing

How often is the code line built? This really means how soon they find out when some new code has broken the code line?

6.5.2. Testing Methodology

What is the testing methodology? For example, are all the tests are “black-box”. That is, the tests are run from the user’s view of the system. Are there internal tests to check individual modules?

6.5.3. Release Testing

When there is a code freeze, how is the new code line tested?

6.5.4. Feature Testing

Is there a comprehensive list of features to which tests are written and run? Are there testing specifications?

6.5.5. Load Testing

How is load testing done, if at all? Is it repeatable?

 What about memory leaks?

6.5.6. Response Time Testing

How is response time tested?

6.5.7. Testing correctness of retrieval

For products that run queries and/or do retrievals or calculations, how are the results verified?

6.6. Bugs & Support

6.6.1. Reporting & Tracking

How are bugs reported and tracked? Is a commercial or home-grown system used?

When bugs are found how are they categorized and prioritized? Does the development team see the bugs?

6.6.2. Bug Fixing

How close can the environment of the bug reported be duplicated by the bug-fixer? When bugs are fixed, how is the bug fix tied back to the bug tracking and testing systems?

6.7. Release Process

How often are releases done?

What is the process?

Does product X have to support multiple releases?

6.8. Engineering Practices Observations

These are the summary observations about the engineering practices. In this section you want to list the items listed above that are done correctly (or at all). Be specific. For example:

Specifically needed are:

· Clear requirements docs for each new feature/performance release

· Acceptance tests created by Engineering done on a white box basis and run by QA

· Test plans created by QA and reviewed by Engineering
· Repeatable regression testing done as part of the build process.
· A bug tracking system that ties to source code control system and which allows better reporting and metrics.
· A testing set-up that reflects a production set-up as much as possible. This includes not only hardware but also numbers of distinct users and a large enough document set.
2
iii
Acme, inc. proprietary & confidential

© Tilden Park Software, 2001

